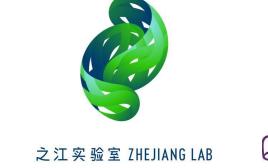


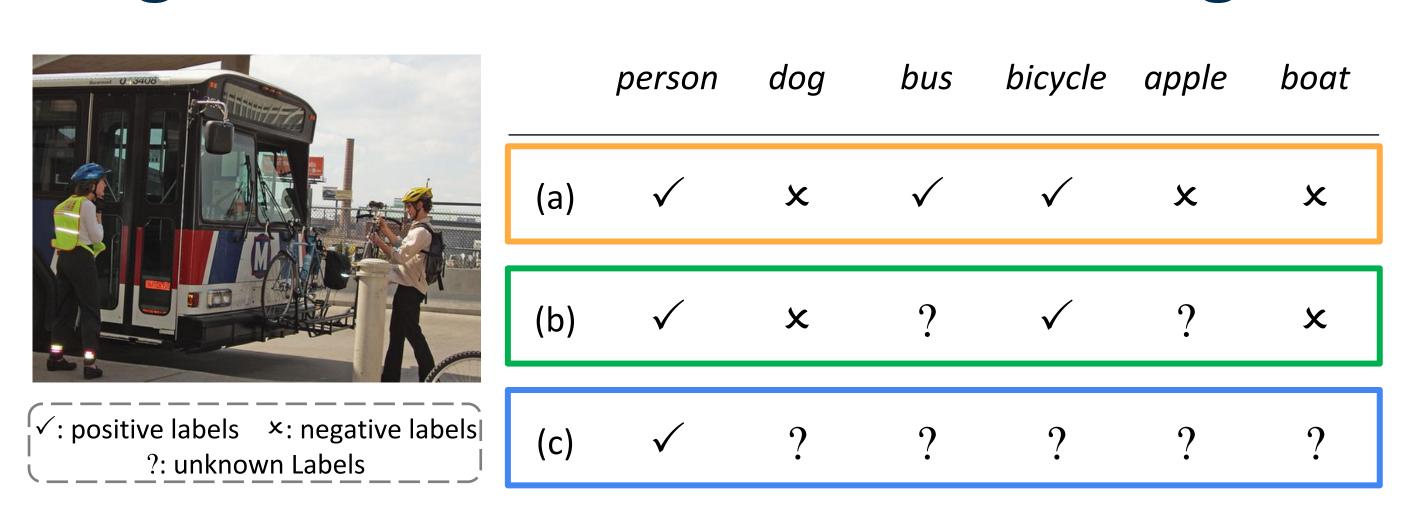
Acknowledging the Unknown for Multi-label Learning with Single Positive Labels



Donghao Zhou^{1,2}, Pengfei Chen³, Qiong Wang¹, Guangyong Chen^{4*}, Pheng-Ann Heng^{1,5}

¹SIAT, CAS ²UCAS ³Tencent ⁴Zhejiang Lab ⁵CUHK

Single Positive Multi-label Learning



(a): Multi-label Learning

(b): Multi-label Learning with Missing Labels (MLML)

(c): Single Positive Multilabel Learning (SPML)

In SPML, each multi-label training image has only one positive label and other labels remain unannotated.

Traditional Solution

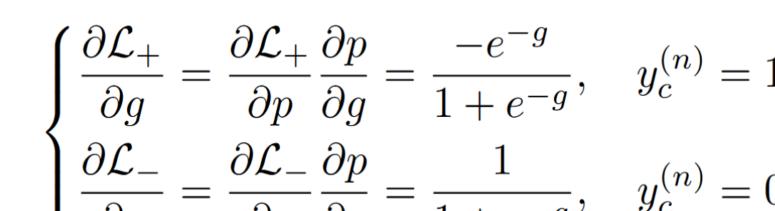
Assuming-Negative (AN) Loss: assumes all unannotated labels are negative and follows BCE loss.

$$\mathcal{L}_{AN}(\mathbf{f}^{(n)}, \mathbf{y}^{(n)}) = -\frac{1}{C} \sum_{c=1}^{C} \left[\mathbb{1}_{[y_c^{(n)} = 1]} \log(f_c^{(n)}) + \mathbb{1}_{[y_c^{(n)} = 0]} \log(1 - f_c^{(n)}) \right]$$

The gradient regime of AN loss:

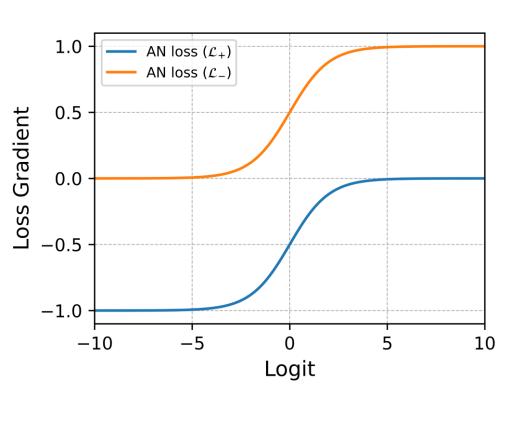
$$\mathcal{L}_{+} = -\log(p)$$

$$\mathcal{L}_{-} = -\log(1-p)$$



It results in three issues:

- 1. Dominance of Assumed Negative Labels
- 2. Introduced Label Noise
- 3. Over-Suppression for Confident Positive [§] Predictions



Motivation

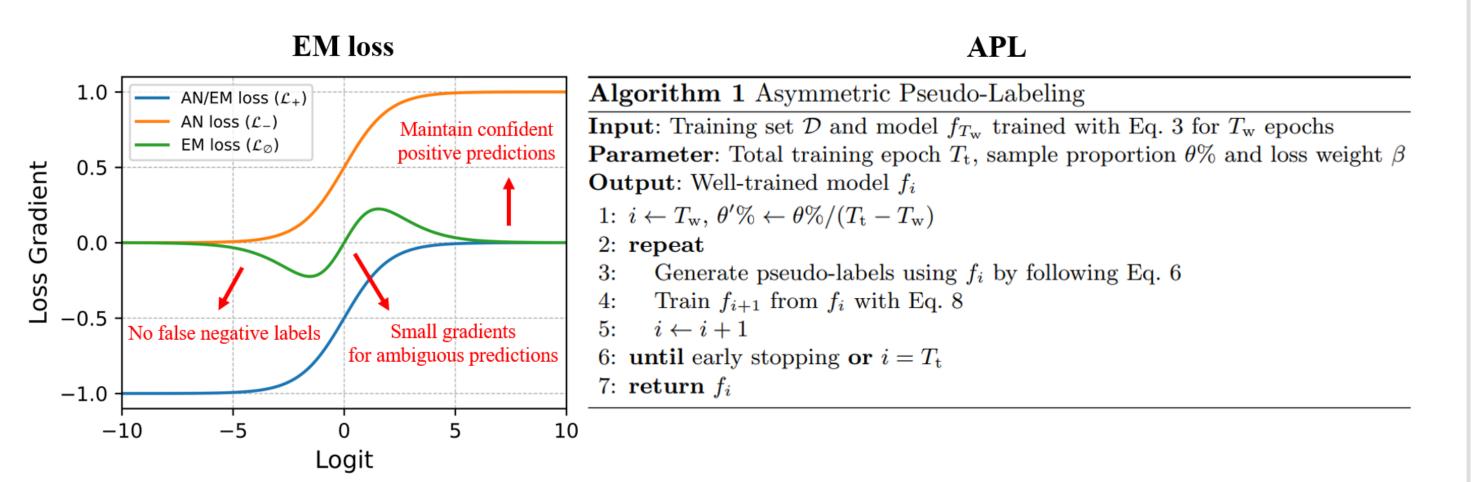
Una. labels need to be treated with a better gradient regime. Instead of making an unrealistic assumption, we choose to acknowledge the fact that they are unknown.

Acknowledging the Unknown

- 1. Entropy-Maximization (EM) Loss: maximizes the entropy of predicted probabilities for una. labels.
- 2. Asymmetric Pseudo-Labeling (APL): adopts asymmetric-tolerance PL strategies.

$$\mathcal{L}_{EM}(\mathbf{f}^{(n)}, \mathbf{y}^{(n)}) = -\frac{1}{C} \sum_{c=1}^{C} [\mathbb{1}_{[y_c^{(n)} = 1]} \log(f_c^{(n)}) + \mathbb{1}_{[y_c^{(n)} = 0]} \alpha H(f_c^{(n)})]$$

$$H(f_c^{(n)}) = -[f_c^{(n)}\log(f_c^{(n)}) + (1 - f_c^{(n)})\log(1 - f_c^{(n)})]$$



Benchmark Results

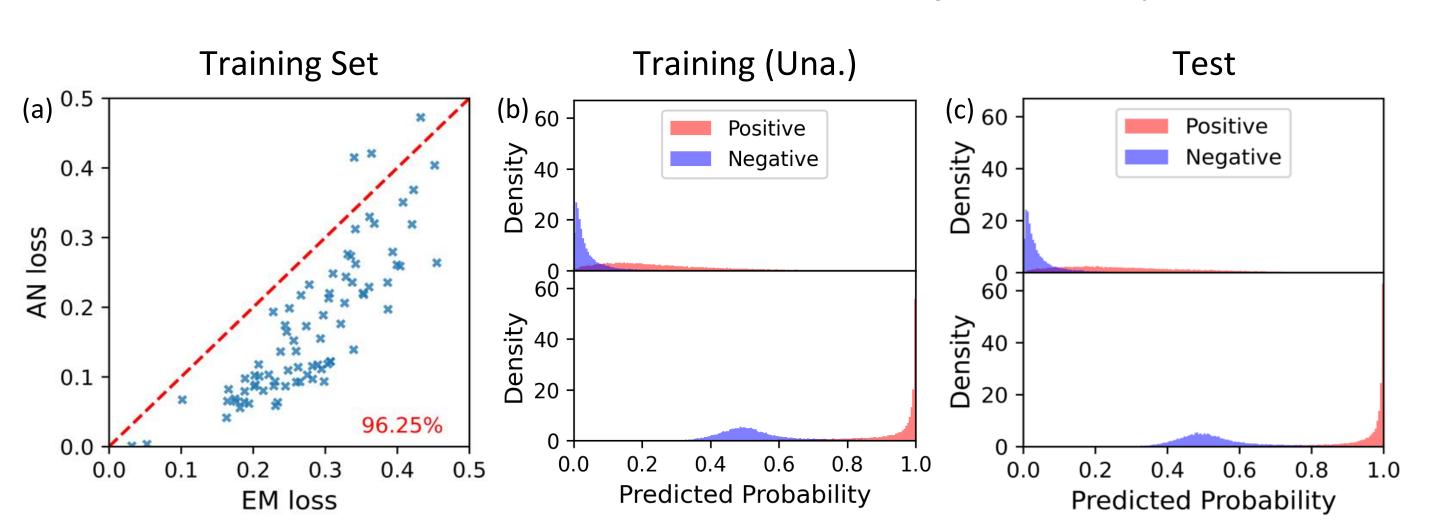
Experimental results with mAP on four largescale multi-label datasets

Ann. Labels	Methods	VOC	COCO	NUS	CUB	_
All P. & All N.	BCE loss	89.42±0.27	76.78 ± 0.13	52.08 ± 0.20	30.90 ± 0.64	→ Oracles
1 P. & All N.	BCE loss	87.60 ± 0.31	71.39 ± 0.19	$46.45{\pm}0.27$	20.65 ± 1.11	Oracles
1 P. & 0 N.	AN loss	85.89 ± 0.38	64.92 ± 0.19	42.27 ± 0.56	18.31 ± 0.47	
	$\overline{\mathrm{DW}}$	86.98±0.36	67.59 ± 0.11	45.71 ± 0.23	19.15 ± 0.56	
	L1R	85.97±0.31	64.44 ± 0.20	42.15 ± 0.46	17.59 ± 1.82	AN Loss and
	L2R	85.96±0.36	$64.41 {\pm} 0.24$	42.72 ± 0.12	17.71 ± 1.79	Improved AN Loss
	LS	87.90±0.21	67.15 ± 0.13	43.77 ± 0.29	$16.26 {\pm} 0.45$	
	N-LS	88.12 ± 0.32	67.15 ± 0.10	43.86 ± 0.54	16.82 ± 0.42	
	EntMin	53.16 ± 2.81	32.52 ± 5.55	19.38 ± 3.64	13.08 ± 0.15	
	Focal loss	87.59 ± 0.58	68.79 ± 0.14	47.00 ± 0.14	19.80 ± 0.30	
	ASL	87.76 ± 0.51	68.78 ± 0.32	46.93 ± 0.30	18.81 ± 0.48	→ Other Comprising
	ROLE	87.77±0.22	67.04 ± 0.19	41.63 ± 0.35	13.66 ± 0.24	Methods
	ROLE+LI	88.26 ± 0.21	69.12 ± 0.13	45.98 ± 0.26	14.86 ± 0.72	
1 P. & 0 N.	EM loss	89.09±0.17	70.70 ± 0.31	47.15±0.11	20.85 ± 0.42	→ Ours
	EM loss+APL	$89.19{\pm}0.31$	$70.87{\pm}0.23$	$47.59 {\pm} 0.22$	$21.84{\pm}0.34$	

The proposed method achieves **SOTA results** on all four benchmarks, and even **approaches to the results of training with full annotations** in some cases.

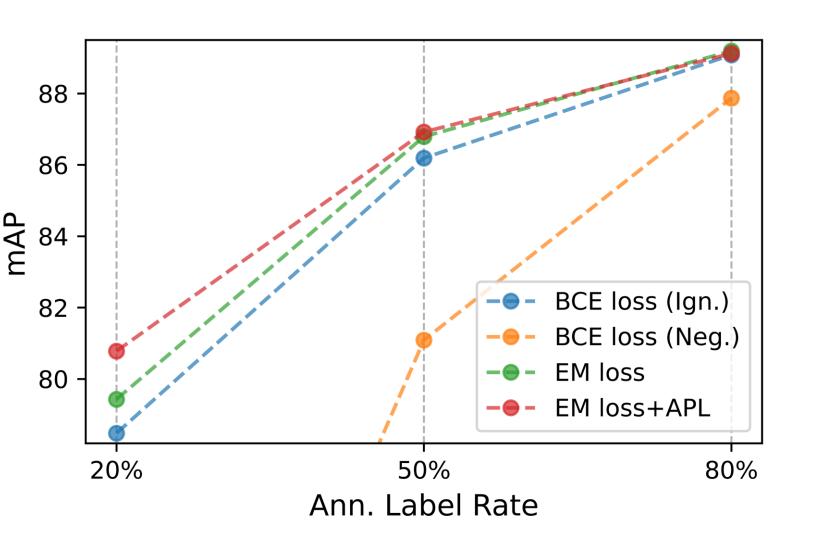
Further Analysis

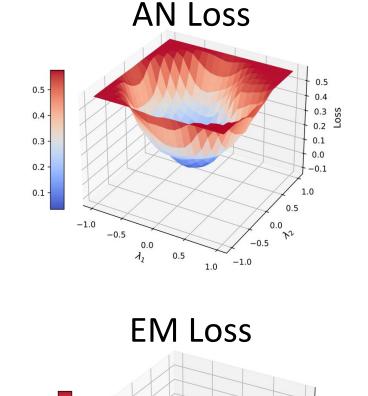
Distinguishability of the predictions for pos. and neg. labels (a): Wass. distances (b)&(c): Densities of an example class



Performance in a more general scenario (MLML)

Generalization Evaluation by Loss Landscapes





0.15 0.10 0.05 0.00 -0.05 -0.10 -1.0 0.5 0.0 -1.0 -

Qualitative Results



Paper and Code are publicly available: https://github.com/Correr-

Zhou/SPML-AckTheUnknown

